Text Mining through Entity-Relationship Based Information Extraction

Lipika Dey¹, Muhammad Abulaish², Jahiruddin³ and Gaurav Sharma⁴

¹ Innovation Labs, Tata Consultancy Services, New Delhi, India
lipika.dey@tcs.com

² Department of Mathematics, ³Department of Computer Science, Jamia Millia Islamia (A Central University), New Delhi – 25, India
abulaish@ieee.org

⁴ Department of Mathematics, Indian Institute of Technology, New Delhi – 16, India

Abstract

In this paper we describe an information extraction and text mining system which identifies key information components from text documents. The information components are centered on domain entities and their relationships. The components mined from a repository are chained using an n-gram-based algorithm. The information chains provide a comprehensive view of the collection and can be also used for inferential reasoning.

Keywords: Information extraction, Visualization, Text mining, Knowledge discovery

1. Introduction

Text mining, also known as text data mining [6] or knowledge discovery from textual databases [3] refers to the process of extracting interesting and non-trivial patterns or knowledge from unstructured text documents from a fixed domain. Text mining involves the process of extracting semi-structured information components from text, usually from multiple documents, and then reason with these semi-structured components to derive patterns within them. The aim of text mining is to provide the following facilities: (i) Distill the meaning of a text in a concise form, (ii) View accurate summaries before plunging into full documents, (iii) Navigate efficiently through large textbases, and (iv) Perform natural language information retrieval. Automated text summarization and visualization are immensely popular with magazine editors, political and business analysts, and students who wish to see summaries before plunging into the full documents. The potential of text data mining had been visualized by Swanson who had shown how chains of causal implication within the medical literature can lead to hypotheses for causes of rare diseases [9].

In this paper we present methodologies to identify important semi-structured information components using semantic and linguistic analysis of text documents. We have also presented methodologies for integrating information from multiple sources that can help in easy comprehension and smooth navigation through the pile of information. We propose the use of entity-relationships as semi-structured information components. We have presented experimental results showing information mined from PUBMED documents related to Alzheimer’s disease, Cancer and AIDS. In section 2 we review some of the related works. Section 3 elaborates on the text mining approach to extract relations and their arguments from text documents. In section 4 we present the mining process to discover information chains. Finally section 5 concludes the paper with future directions.

2. Related work

Fukuda et al. [5] had proposed a rule-based method called PROtein Proper-noun phrase Extracting Rules (PROPER) to extract material names from sentences using surface clue on character strings in medical and biological documents. Machine-learning based techniques like Hidden Markov Model, Naïve Bayes and Support Vector Machines (SVMs) have been successfully applied to identify and classify gene/protein names in text documents. Biological relationship extraction has been addressed in [2], [7], [8]. Friedman et al. [4] have developed a natural-language processing system, GENIES, for the extraction of molecular pathways from journal articles. [1] and [9] have presented semi-automated mechanisms for inferencing from information components, was partially automated. However, generic, efficient algorithms for relevant text information extraction, mining and inferencing all at one go are still rare. Hearst [6] had suggested that good algorithms will
have to take into account various kinds of semantic and linguistic constraints.

3. Relation Extraction through Text Mining

The proposed approach to extract semi-structured information components collected from a focused corpus explores the roles of biological entities in the corpus and integrates these into cohesive structures. We propose a multi-perspective collation mechanism to explore various aspects of the domain. Roles of entities are characterized by relations expressed in a sentence in which these entities occur. These relations are identified through semantic and linguistic analysis [2]. Natural Language Processing (NLP) tools are used to identify entities and relations in a document. Entities are identified as Noun Phrases. An information component is a relation triplet defined as \(<S, R, O>\) where \(R\) is a relational verb representing an event/action/process and \(S\) and \(O\) are the associated subject and object respectively. Subject and object are entities represented by noun phrases. Relation extraction from text is a two step process. Text documents are parsed for Parts of Speech (POS) analysis. POS analysis tags are used for extracting information components. These steps are explained in brief in the following paragraphs.

Table 1. Sample sentences and corresponding dependency trees generated by the Stanford parser

<table>
<thead>
<tr>
<th>Sentence No.</th>
<th>[PMID: 17446028]</th>
<th>Alzheimer’s disease (AD) is the commonest form of degenerative dementia and is characterised by progressive cognitive decline.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependency Tree:</td>
<td>poss(disease-3, Alzheimer-1), nsubj(is-7, disease-3), dep(disease-3, AD-5), det(form-10, the-8), amod(form-10, commonest-9), dobj(is-7, form-10), amod(dementia-13, degenerative-12), oof(form-10, dementia-13), dep(characterised-16, is-15), and(is-7, characterised-16), amod(decline-20, progressive-18), amod(decline-20, cognitive-19), by(characterised-16, decline-20)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. A partial list of relation triplets extracted by using rules 1 and 2 from a collection of bio-medical text documents

<table>
<thead>
<tr>
<th>IC</th>
<th>Domain</th>
<th>Subject</th>
<th>Relational Verb</th>
<th>Preposition</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alzheimer’s Disease</td>
<td>Alzheimer’s disease</td>
<td>is</td>
<td>the commonest form of degenerative dementia</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Alzheimer’s Disease</td>
<td>Formation of beta-amyloid plaques</td>
<td>is</td>
<td>a crucial feature of Alzheimer’s disease</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Alzheimer’s Disease</td>
<td>BACE1</td>
<td>is</td>
<td>the protease responsible for the production of amyloid-beta peptides that accumulate in the brain of Alzheimer’s disease (AD) patients</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Alzheimer’s Disease</td>
<td>Down-regulation of HIF-1alpha</td>
<td>reduced</td>
<td>the level of BACE1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Alzheimer’s Disease</td>
<td>Hypoxia</td>
<td>facilitates</td>
<td>Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AIDS and Cancer</td>
<td>HIV infected people and AIDS patients</td>
<td>develop</td>
<td>Cancer</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AIDS</td>
<td>Streptococcus pneumoniae and Legionella pneumophila</td>
<td>pneumonia</td>
<td>in</td>
<td>HIV infected patients</td>
</tr>
<tr>
<td>8</td>
<td>Cancer</td>
<td>both estrogen (E (2)) and hypoxia</td>
<td>Involved</td>
<td>in</td>
<td>tumor development and progression</td>
</tr>
<tr>
<td>9</td>
<td>Cancer</td>
<td>siRNA targeting MGr1-Ag</td>
<td>showed</td>
<td>a markedly decreased VCR-induced HIF-1alpha expression and transcriptional activity</td>
<td></td>
</tr>
</tbody>
</table>

Sample Rule: If there exist two dependencies involving two different entities \(E_i\) and \(E_j\) associated with single verb \(v'\) satisfying the condition \([\text{Subj}(v', E_i) \land \text{Obj}(v', E_j)]\), then \(v'\) is identified as a relational verb between the two entities \(E_i\) and \(E_j\). It is characterized as an instance of binary relation represented by \(E_i \rightarrow v' \leftarrow E_j\). During triplet extraction, \(E_i\) is treated as a head noun and the longest noun phrase containing this is considered as the subject of the information component. Similarly, the longest noun phrase containing head noun \(E_j\) forms the object of the
information component. By applying this rule, the two relation triplets identified from the first sentence in table 1 is <Alzheimer’s disease (AD) → is ← the commonest form of degenerative dementia> and <Alzheimer's disease (AD) → characterised by ← progressive cognitive decline>.

Table 2 shows a partial list of relation triplets <subject, relation, object>, extracted by using our rule set from a collection of abstracts which were returned by PubMed on Alzheimer’s Disease, Cancer and AIDS.

4. Text Summarization Using Information Components

The information components extracted from a corpus can be used to provide a summarized view of information both document-wise and corpus-wise. Figure 1 displays a set of relations, where either the subject or the object contained the term “Alzheimer’s Disease”. These relations were extracted from top hundred documents extracted from PUBMED with the query “Alzheimer’s Disease”. It is obvious that these relations capture various key information about “Alzheimer’s Disease” including its manifestation, cause, pathological condition etc. very succinctly. When information chains are computed from a single homogeneous corpus, the corpus can be navigated incrementally using the chains. For example, starting with relation number 3 of Table 1, one can further look at information components containing BACE1 in subject or object. One such relation found is “Mitochondrial respiratory inhibition and oxidative stress elevate beta-secretase(BACE1) proteins”, which provide valuable information about the reasons.

When information chains are computed over a heterogeneous collection, knowledge gained from one domain can be extended to another domain through similarity over components. Table 3 shows the role played by “hypoxia” that is lack of oxygen and “Hypoxia Inducing Factors” as summarized from a heterogeneous corpus on all diseases. Two types of chaining, forward and backward are used. While forward chaining identifies inferential reasoning path by establishing similarity between the object of earlier component and the subject of the next, backward chains represent similar information components.
The proposed similarity computation algorithm locates possibly similar entities even when there is variation in naming of a single entity. For example, the algorithm ensures that the term “amyloid beta plaques” have a good match with “beta amyloid plaques” or even “abeta”. The algorithm uses a novel weighted n-gram method and works as follows:

- Step 1: For all 2-grams and 3-grams extracted from the entity tokens, its frequency in each token is stored.
- Step 2: All full token matches are rewarded while token misses are penalized

Table 3. Summarizing study of role of Hypoxia and Hypoxia Inducing factor (HIF) across diseases

| 17121991 | <Hypoxia, facilitates, Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression>
<Hypoxia, is, a direct consequence of hypoperfusion>
<Hypoxia, facilitate, AD pathogenesis>
<Hypoxia treatment markedly increased, Abeta deposition and neuritic plaque formation> |
| 17303576 | <Acute hypoxia, increases, the expression and the enzymatic activity of BACE1 by up-regulating the level>
<Results demonstrate an important role for hypoxia/HIF-1alpha, in, modulating the amyloidogenic processing of APP and provide a molecular mechanism for increased incidence of AD following cerebral ischemic and stroke injuries> |
| CANCER1 | <Both estrogen (E2) and hypoxia, involved, tumor development and progression> |
| CANCER2 | <VCR, induce, a significant expression of HIF-1alpha>
<VCR-resistant SGC7901/VCR cells, had, higher expression of HIF-1alpha>
<VCR, enhance, DNA binding activity and transcriptional activity of HIF-1alpha by 5.42 - and 9.42-fold>
Further study, upregulated, HIF-1alpha protein expression and transcriptional activity in gastric cancer cell |
| CANCER3 | <siRNA targeting MGr1-Ag, showed, a markedly decreased VCR-induced HIF-1alpha expression and transcriptional activity>
<SIRNA, be, the major signaling molecules in MGr1-Ag ∩ 37LRP-induced HIF-1alpha expression> |

5. Conclusion

In this paper we have proposed a text mining mechanism which extracts entity-relationships from documents. Summarizing a document through relations help in easy visualization of contents of a repository and experimental results for PUBMED documents have been presented. Chaining through relations can also help in the discovery of potentially interesting information from the vast text repository. This is an attractive idea since it can direct future research and provide interesting insights into a domain.

References

